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Abstract—The object of this paper is to introduce a new difference 

sequence spaces which arise from the notions of | , |kN p


 

summability, using an infinite matrix B  and an orlicz function in 
seminormed complex linear space. Various algebraic and topological 
properties and certain inclusion relations involving this space have 
been discussed. 
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1. INTRODUCTION 
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Note that for any sequences ba , and scalar  , we have 
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Lindenstrauss and Tzafriri [10] used the idea of an orlicz 

function M  to construct the sequence space M  of all 

sequences of scalars  kx  such that 
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is a BK space [ 7, p. 300] usually called an orlicz sequence 

space. The space M  is closely related to the space p  

which is an orlicz sequence space with   ,pM x x for 

.1  p  We recall [ 7,10] that an orlicz function M
 

is a function

  ,),0),0   which is continuous, non-

decreasing and convex with    0 0 , 0M M x   for 

all 0x  and   ,xM  as .x  Note that 

an orlicz function is always unbounded . 

An orlicz function M  is said to satisfy condition 2 for 

all values of ,u  if there exists constant K such that 

   2 , 0 .M u K M u u   It is easy to see that always 

K > 2 [8]. A simple example of an orlicz function which 

satisfies the condition 2  for all values of u  is given 

by    ,1 
uauM since 

   2 2 2 .M u a u M u
    The orlicz function 

  1 ueuM u does not satisfy the 

.2 condition
 

The condition 2  is equivalent to the inequality 

     uMKuM    which holds for all values of 

u , where   can be any number greater than unity. It is easy 

to see that 21 MM   is an orlicz function when 1M  and 

2M  are orlicz functions, and that the function zM  ( z  is 

a positive integer), the composition of an orlicz function M  

with itself z  times, is also an orlicz function. If an orlicz 

function M  satisfies the condition 2 , then so does 

the composite orlicz function zM  

By w  we shall denote the space of all scalar sequences. 

0, candc  denote the spaces of bounded, convergent 

and null sequences  kx x with complex terms, 

respectively, normed by sup .k
k

x x   The notion of 

difference sequence spaces was introduced by kizmaz [8]. It 
was further generalized by Et and Colak [4] . Later on Et and 
Esi [5] defined the sequence spaces 
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Throughout the paper X  denotes a seminormed complex 

linear space with seminorm q , M  is an orlicz function, 

0s  is a real number,  kr r  is a bounded sequence of 

strictly positive real numbers and ( )nkB b of infinite 

matrix. The symbol  Xw  denotes the space of all X -

valued sequences. 

 

We now introduce the following generalized difference X -
valued sequence space using orlicz function M . 

 

   
1

| | , , , , ,

: ,
.

for 0

k

m
p v

r
m

n k v k

s
k

N B M r q s

b a
a w X M q

k

some












 

                  
  

  

where      .1
11 aaa k

m
vk

m
vk

m
v 

  
 

 

Some well-known spaces are obtained by specializing 
.,,,,,,, sandprqvmMXB  

(i) If  ,1,CB  that is the Cesaro matrix, 

    0,0,,  sandxxMvmxxqCX

then    | | , , , , | |m
p pvN M r q s N r

 

   

(Bhardwaj and Singh [2]). 

(ii) If  ,1,CB  that is the Cesaro matrix, 

  00,,  sandvmxxqCX then 

   | | , , , , | | ,m
p pvN M r q s N M r

 

   

(Bhardwaj and Singh [3]). 
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(iii) If  ,1,CB  that is the Cesaro matrix, 0 ,m v 

then  | | , , , ,m
p vN M r q s



   | | , , ,pN M r q s


 

(Altin et al. [1]). 

(iv) If  ,1,CB  that is the Cesaro matrix, 

   , , 0, , 0X C q x x m v M x x s     

1 ,kand p for all k then 

   1| | , , , , | | .m
p vN M r q s C r



   (Nanda and 

Mohanty [12]). 

(v) If  ,1,CB  that is the Cesaro matrix, 

    ,10,,0,, kallforrandsxxMvmxxqCX k 

then  | | , , , , , | | .m
p pvN B M r q s N

 

   

We denote  | | , , , , ,m
p vN B M r q s



 by 

 | | , , , ,m
p vN B r q s



  when   xxM   and by 

 | | , , , ,m
p vN B M r q



  when s = 0. 

In this paper, we propose to study the linear topological 
structure of the sequence space 

 | | , , , , , ,m
p vN B M r q s



 certain inclusion relations 

between these spaces have been discussed. The composite 

space  | | , , , , ,m z
p vN B M r q s



  using composite orlicz 

function zM  has also been studied. 

The following inequalities [11, p. 190] are needed throughout 
the paper. 

Let  krr   be a bounded sequence of strictly positive real 

numbers. If k
k

rH sup then for any complex ,, kk ba  

  (1)
k k kr r r

k k k ka b D a b    

where  .2,1max 1 HD  Also for any complex  , 

 max 1, (2)kr H 
 

2. LINEAR TOPOLOGICAL STRUCTURE OF 

 | | , , , , ,m
p vN B M r q s



 SPACE
 

AND 

INCLUSION THEOREMS 

In this section we examine various algebraic and topological 

properties of the space  | | , , , , ,m
p vN B M r q s



  and 

investigate some inclusion relations. 

Theorem 2.1. For any Orlicz function M , 

 | | , , , , ,m
p vN B M r q s



  is a linear space over the 

complex field C . 

The proof is a routine verification by using standard 
techniques and hence is omitted. 

Theorem 2.2. For any Orlicz function M , 

 | | , , , , ,m
p vN B M r q s



  is a is a topological linear 

space, paranormed by 
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The proof uses ideas similar to those used (e.g.) in [1, p. 427] 
and the fact that every paranormed space is a topological 
linear space [13, p. 37]. 

Remark 2.3. g need not be total, for example if 1kp  

for all k and kaa  is any non-zero constant sequence then 

 ak  is constant for all k  and hence  ag  is zero for 

.1m  

Theorem 2.4. Let 1 2, ,M M M  be orlicz functions, then  

(i) If there is a positive constant   such that   ttM   

for all ,0t  then 

 | | , , , , ,m
p vN B M r q s





  1| | , , , , , .m
p vN B M M r q s
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for some 

.0 Since   ttM   for all ,0t we have by 
inequality (2) 
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 (ii) The proof is immediate using (1).  
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Theorem 2.6. Let M  be an orlicz function which satisfies 

,2 condition  for some 21 ,, qqq  be seminorms and 

21 ,, sss be non-negative real numbers . Then  
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non-decreasing and convex, we have 
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  for all 1...,2,1  mi  and 

the inclusion is strict. To show that the inclusion is strict, 
consider the following example. 
 

Example 2.8. Let  , ,X C q x x    ,M x x  

0s and 1kp   for all .k Let  kaa  be defined by 

,133 2  kka k  then 

 2| | , , , ,p va N B M q s


  but 

 3| | , , , , .p va N B M q s
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sequences of positive real
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3. Composite space  | | , , , , ,m z
p vN B M r q s



  using 

composite orlicz function zM   

Taking orlicz function zM  instead of M  in the space 

 | | , , , , ,m
p vN B M r q s



 we can define the composite 

space  | | , , , , ,m z
p vN B M r q s



  as follows: 

 Definition 3.1. For a fixed natural number z , we define 
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Theorem 3.2. For any orlicz function M  and ,Nz   
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(ii) Suppose there exists a constant ,10,    such that 

   ttM   for all 0t and let and Nzn ,  be 

such that ,zn  then 
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 The proof follows from Theorem 2.5 and Theorem 2.4(i) and 

hence is omitted. 

Example 3.3.   111  tetM  and 

  t
t

t
tM 




1

2

2  for all 0t  satisfy the conditions 

given in Theorem 3.2 (i), (ii) respectively. 
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