Generalized Difference Sequence Spaces Defined By $|\bar{N}, p_k|$ Summability and Orlicz Functions in Seminormed Space

Tanweer Jalal

National Institute of Technology, Hazratbal, Srinagar E-mail: tjalal@nitsri.net

Abstract—The object of this paper is to introduce a new difference

sequence spaces which arise from the notions of $|N, p_k|$ summability, using an infinite matrix B and an orlicz function in seminormed complex linear space. Various algebraic and topological properties and certain inclusion relations involving this space have been discussed.

Keywords: Difference sequence space, orlicz function, infinite matrix, topological linear space.

1. INTRODUCTION

Let (s_k) denotes the sequence of partial sums of the infinite series $\sum_{k=0}^{\infty} a_k$. Denote by $(p_k), k \ge 0$ a sequence of

positive real numbers and write $P_k = \sum_{z=0}^{k} p_z$. The series

 $\sum_{k=0}^{\infty} a_k \quad \text{(or the sequence } (s_k) \text{) is said to be summable}$ $\left(\bar{N}, p_k\right) \text{ to the sum } \ell \text{ (finite), if}$ $t_k = \frac{1}{P_k} \sum_{z=1}^{k} p_z s_z \to \ell \quad as \quad k \to \infty,$

and is said to be absolutely summable $\left(\bar{N}, p_k\right)$ or

summable $|N, p_k|$ if the sequence $(t_k) \in BV$, that is

$$\begin{split} \sum_{k} \left| t_{k} - t_{k-1} \right| &< \infty. \quad \text{Let} \quad |\bar{\mathbf{N}}_{p}| \quad \text{and} \quad \bar{N}_{p} \quad \text{denote} \\ \text{respectively, the set of all sequences which are summable} \\ |\bar{N}, p_{k}| \quad \text{and} \left(\bar{N}, p_{k} \right). \end{split}$$

Given a sequence $a = (a_k)$, write for $k \ge 1$, $\phi_k(a) = t_k - t_{k-1}$. By an application of Abel's transformation we have

$$\varphi_k(a) = t_k - t_{k-1} = \frac{p_k}{P_k P_{k-1}} \sum_{n=1}^k P_{n-1} a_n \quad (k \ge 1).$$

Note that for any sequences a , b and scalar λ , we have

$$\phi_{k}(a+b) = \varphi_{k}(a) + \varphi_{k}(b)$$
 and
$$\phi_{k}(\lambda a) = \lambda \varphi_{k}(a).$$

Lindenstrauss and Tzafriri [10] used the idea of an orlicz function M to construct the sequence space ℓ_M of all sequences of scalars (x_k) such that

$$\sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0.$$

The space ℓ_M equipped with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}$$

International Conference on "Innovative Approach in Applied Physical, Mathematical/Statistical, Chemical Sciences and Emerging Energy Technology for Sustainable Development" (APMSCSET-2017) **ISBN**-978-93-85822-39-1

is a BK space [7, p. 300] usually called an orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an orlicz sequence space with $M(x) = x^p$, for $1 \le p < \infty$. We recall [7,10] that an orlicz function Mis a function

 $[0,\infty) \rightarrow [0,\infty)$, which is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0 for all x > 0 and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$. Note that an orlicz function is always unbounded.

An orlicz function M is said to satisfy $\Delta_2 - condition$ for all values of u, if there exists constant K such that $M(2u) \leq KM(u), u \geq 0$. It is easy to see that always K > 2 [8]. A simple example of an orlicz function which satisfies the $\Delta_2 - condition$ for all values of u is given by $M(u) = a |u|^{\alpha} (\alpha > 1)$, since $M(2u) = a 2^{\alpha} |u|^{\alpha} = 2^{\alpha} M(u)$. The orlicz function $M(u) = e^{|u|} - |u| - 1$ does not satisfy the $\Delta_2 - condition$.

The $\Delta_2 - condition$ is equivalent to the inequality $M(\ell u) \leq K(\ell)M(u)$ which holds for all values of u, where ℓ can be any number greater than unity. It is easy to see that $M_1 + M_2$ is an orlicz function when M_1 and M_2 are orlicz functions, and that the function M^z (z is a positive integer), the composition of an orlicz function M with itself z times, is also an orlicz function. If an orlicz function M satisfies the $\Delta_2 - condition$, then so does the composite orlicz function M^z

By *w* we shall denote the space of all scalar sequences. ℓ_{∞} , *c* and *c*₀ denote the spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by $||x|| = \sup_k |x_k|$. The notion of difference sequence spaces was introduced by kizmaz [8]. It was further generalized by Et and Colak [4]. Later on Et and Esi [5] defined the sequence spaces

$$X(\Delta_{v}^{m}) = \left\{ x = \left(x_{k} \right) \in w : \left(\Delta_{v}^{m} x_{k} \right) \in X \right\}$$

where $m \in N$, $\Delta_{v}^{0} x_{k} = v_{k} x_{k}$, $\Delta_{v} x = v_{k} x_{k} - v_{k+1} x_{k+1}$, $\Delta_{v}^{m} x = \left(\Delta_{v}^{m} x_{k}\right) = \left(\Delta_{v}^{m-1} x_{k} - \Delta_{v}^{m-1} x_{k+1}\right)$ so that $\Delta_{v}^{m} x_{k} = \sum_{i=0}^{m} \left(-1\right)^{i} {m \choose i} v_{k+i} x_{k+i}$.

Throughout the paper X denotes a seminormed complex linear space with seminorm q, M is an orlicz function, $s \ge 0$ is a real number, $r = (r_k)$ is a bounded sequence of strictly positive real numbers and $B = (b_{nk})$ of infinite matrix. The symbol w(X) denotes the space of all X-valued sequences.

We now introduce the following generalized difference X -valued sequence space using orlicz function M.

$$\left| \begin{array}{l} \overline{N}_{p} \left| \left(B, \Delta_{v}^{m}, M, r, q, s \right) \right| = \\ \left\{ a \in w(X) : \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M\left(q\left(\frac{\Delta_{v}^{m} \phi_{k}(a)}{\rho} \right) \right) \right]^{r_{k}} < \infty, \right\} \\ \text{for some } \rho > 0 \end{array} \right\}.$$

where
$$\Delta_{v}^{m} \varphi_{k}(a) = \Delta_{v}^{m-1} \varphi_{k}(a) - \Delta_{v}^{m-1} \varphi_{k+1}(a).$$

Some well-known spaces are obtained by specializing B, X, M, m, v, q, r, p and s.

(i) If
$$B = (C, 1)$$
, that is the Cesaro matrix,
 $X = C, q(x) = |x|, m = v = 0, M(x) = x$ and $s = 0$
then $|\bar{N}_p|(\Delta_v^m, M, r, q, s) = |\bar{N}_p|(r)$

(Bhardwaj and Singh [2]).

(ii) If
$$B = (C, 1)$$
, that is the Cesaro matrix,
 $X = C$, $q(x) = |x|$, $m = v = 0$ and $s = 0$ then
 $|\overline{N}_p|(\Delta_v^m, M, r, q, s) = |\overline{N}_p|(M, r)$
(Bhardwaj and Singh [3]).

2

(iii) If B = (C, 1), that is the Cesaro matrix, m = v = 0,

 $\bar{|N_p|}\left(\Delta_v^m, M, r, q, s\right) = \bar{|N_p|}\left(M, r, q, s\right)$ then (Altin et al. [1]).

(iv) If B = (C, 1), that is the Cesaro matrix, X = C, q(x) = |x|, m = v = 0, M(x) = x, s = 0and $p_k = 1$ for all k, then

 $|\bar{N}_p|(\Delta_v^m, M, r, q, s) = |C_1|(r).$ (Nanda and Mohanty [12])

(v) If B = (C, 1), that is the Cesaro X = C, q(x) = |x|, m = v = 0, M(x) = x, s = 0 and r_k The formality k is a routine verification by using standard then $|\overline{N}_n|(B, \Delta_v^m, M, r, q, s) = |\overline{N}_n|$.

denote $\bar{N}_{p} | (B, \Delta_{v}^{m}, M, r, q, s)$ by We $|\overline{N}_{p}|(B,\Delta_{v}^{m},r,q,s))$ when M(x) = x and by $|\overline{N}_{p}|(B, \Delta_{v}^{m}, M, r, q)$ when s = 0.

In this paper, we propose to study the linear topological structure of the sequence space

 $|N_{p}|(B, \Delta_{v}^{m}, M, r, q, s)$, certain inclusion relations between these spaces have been discussed. The composite space $|N_p|(B, \Delta_v^m, M^z, r, q, s)$ using composite orlicz function M^{z} has also been studied.

The following inequalities [11, p. 190] are needed throughout the paper.

Let $r = (r_k)$ be a bounded sequence of strictly positive real numbers. If $H = \sup_{k} r_k$ then for any complex a_k , b_k ,

$$\left|a_{k}+b_{k}\right|^{r_{k}} \leq D\left(\left|a_{k}\right|^{r_{k}}+\left|b_{k}\right|^{r_{k}}\right) \quad (1)$$

where $D = \max \{1, 2^{H-1}\}$. Also for any complex λ ,

$$\left| \lambda \right|^{r_{k}} \leq \max \left\{ 1, \left| \lambda \right|^{H} \right\}$$
 (2)

2. LINEAR TOPOLOGICAL **STRUCTURE** OF $|N_{n}|(B,\Delta_{v}^{m},M,r,q,s)$ SPACE AND **INCLUSION THEOREMS**

In this section we examine various algebraic and topological properties of the space $|N_p| (B, \Delta_v^m, M, r, q, s)$ and investigate some inclusion relations

Theorem 2.1. М, For any Orlicz function $|N_p|(B, \Delta_v^m, M, r, q, s)$ is a linear space over the complex field C .

techniques and hence is omitted.

Theorem 2.2. For Orlicz any function Μ, $|N_n|(B, \Delta_v^m, M, r, q, s)$ is a state topological linear space, paranormed by

$$g_{\Delta}(a) = \inf \left\{ \rho^{r_n/G} : \left(\sum_{k=1}^{\infty} \frac{b_{nk}}{k^s} \left[M\left(q\left(\frac{\Delta_v^m \phi_k(a)}{\rho}\right) \right) \right]^{r_k} \right)^{\frac{1}{G}} \le 1 \right\}.$$
$$n = 1, 2, \dots$$

where $G = \max\left(1, \sup r_k\right)$.

The proof uses ideas similar to those used (e.g.) in [1, p. 427] and the fact that every paranormed space is a topological linear space [13, p. 37].

Remark 2.3. g_{Δ} need not be total, for example if $p_k = 1$ for all k and $a = a_k$ is any non-zero constant sequence then $\phi_k(a)$ is constant for all k and hence $g_{\Lambda}(a)$ is zero for $m \geq 1$.

Theorem 2.4. Let M, M_1 , M_2 be orlicz functions, then

(i) If there is a positive constant β such that $M(t) \leq \beta t$ for all $t \ge 0$, then

$$|N_{p}|(B, \Delta_{v}^{m}, M, r, q, s)$$

$$\subseteq |\overline{N}_{p}|(B, \Delta_{v}^{m}, M \circ M_{1}, r, q, s)$$

International Conference on "Innovative Approach in Applied Physical, Mathematical/Statistical, Chemical Sciences and Emerging Energy Technology for Sustainable Development" (APMSCSET-2017) ISBN-978-93-85822-39-1

$$(ii)|\overline{N}_{p}|(B,\Delta_{v}^{m},M_{1},r,q,s)$$

$$\cap|\overline{N}_{p}|(B,\Delta_{v}^{m},M_{2},r,q,s)$$

$$\subseteq|\overline{N}_{p}|(B,\Delta_{v}^{m},M_{1}+M_{2},r,q,s).$$

Proof: (i) Let $a \in |N_p|(B, \Delta_v^m, M_1, r, q, s)$ so that Hence $a \in |N_p|(B, \Delta_v^m, r, q, s)$.

$$\sum_{k=1}^{\infty} \frac{b_{nk}}{k^s} \left[M_1 \left(q \left(\frac{\Delta_v^m \phi_k(a)}{\rho} \right) \right) \right]^{r_k} < \infty \text{ for } \text{ some}$$

 $\rho > 0$. Since $M(t) \le \beta t$ for all $t \ge 0$, we have by inequality (2)

$$\sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[Mu_{k} \right]^{r_{k}} \leq \max\left(1, \beta^{H}\right) \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[u_{k} \right]^{r_{k}}$$
$$u_{k} = M_{1} \left(q\left(\frac{\Delta_{\nu}^{m} \phi_{k}\left(a\right)}{\rho}\right) \right)$$
and hence

$$a \in \overline{[N]}_{p} | (B, \Delta_{v}^{m}, M \circ M_{1}, r, q, s).$$

(ii) The proof is immediate using (1).

Theorem 2.5. For any orlicz function
$$M$$
 if
$$\lim_{u \to \infty} \frac{M(u / \rho)}{(u / \rho)} > 0 \text{ for some } \rho > 0, \text{ then}$$

$$\bar{N}_{p} | (B, \Delta_{v}^{m}, M, r, q, s) \subseteq \bar{N}_{p} | (B, \Delta_{v}^{m}, r, q, s).$$

Proof: If $\lim_{u \to \infty} \frac{M(u/\rho)}{(u/\rho)} > 0$ for some $\rho > 0$, there exists a number $\alpha > 0$ such $M(u / \rho) \ge \alpha (u / \rho)$ for

all u > 0 and some $\rho > 0$. Let

$$a \in |N_p| (B, \Delta_v^m, M, r, q, s)$$
 so that

$$\sum_{k=1}^{\infty} \frac{b_{nk}}{k^s} \left[M\left(q\left(\frac{\Delta_v^m \phi_k(a)}{\rho}\right) \right) \right]^{r_k} < \infty \quad \text{for some}$$

$$\rho > 0.$$

Now, we have

$$\sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M\left(q\left(\frac{\Delta_{\nu}^{m} \varphi_{k}(a)}{\rho}\right)\right) \right]^{r_{k}} \geq \max\left(1, \left(\frac{\alpha}{\rho}\right)^{H}\right) \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[q\left(\Delta_{\nu}^{m} \varphi_{k}(a)\right)\right]^{r_{k}}$$

Theorem 2.6. Let M be an orlicz function which satisfies Λ_{\circ} - *condition*, for some a, a, a_{\circ} be seminorms and

$$s_{1}, s_{2}$$
 be non-negative real numbers . Then

(i)
$$\bar{N}_{p} | \left(B, \Delta_{v}^{m}, M, r, q_{1}, s \right)$$

 $\cap |\bar{N}_{p}| \left(B, \Delta_{v}^{m}, M, r, q_{2}, s \right)$
 $\subseteq |\bar{N}_{p}| \left(B, \Delta_{v}^{m}, M, r, q_{1} + q_{2}, s \right).$
(ii) If there exists a constant $I > 1$ is

(ii) If there exists a constant L > 1such that $q_{2}(x) \leq Lq_{1}(x)$ for all $x \in X$, then

$$\overline{|N_p|} \left(B, \Delta_v^m, M, r, q_1, s \right)$$
$$\subseteq \overline{|N_p|} \left(B, \Delta_v^m, M, r, q_2, s \right)$$

(iii) If $s_1 \leq s_2$, then

$$\bar{|N_p|}(B,\Delta_v^m,M,r,q,s_1) \subseteq \bar{|N_p|}(B,\Delta_v^m,M,r,q,s_2).$$

Proof: The proof of (i) is straight forward using (1).

(ii) Let $a \in |N_p|(B, \Delta_v^m, M, r, q_1, s)$. Then as Msatisfies $\Delta_2 - condition$, we have

$$\sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M \left(q_{2} \left(\frac{\Delta_{\nu}^{m} \phi_{k}(a)}{\rho} \right) \right) \right]^{r_{k}} \leq \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M \left(L q_{1} \left(\frac{\Delta_{\nu}^{m} \phi_{k}(a)}{\rho} \right) \right) \right]^{r_{k}}$$

$$\leq \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[K(L) M\left(q_{1}\left(\frac{\Delta_{\nu}^{m} \varphi_{k}(a)}{\rho}\right)\right) \right]^{r_{k}}$$

$$\leq \max\left(1, K(L)^{H}\right) \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M\left(q_{1}\left(\frac{\Delta_{\nu}^{m} \varphi_{k}(a)}{\rho}\right)\right) \right]^{r_{k}} < \infty,$$

Hence $a \in |N_p| (B, \Delta_v^m, r, q_2, s)$. The proof of (iii) is trivial.

Theorem 2.7. Let $m \ge 1$, then

$$|\bar{N}_{p}|(B, \Delta_{v}^{m-1}, M, q, s)$$

$$\subseteq |\bar{N}_{p}|(B, \Delta_{v}^{m}, M, q, s).$$

Proof: Let $a \in |\overline{N}_p| (B, A)$

$$\Delta_v^{m-1}, M, q, s$$
, then

$$\sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M\left(q\left(\frac{\Delta_{v}^{m-1}\phi_{k}\left(a\right)}{\rho}\right) \right) \right] < \infty \quad \text{for some}$$

 $\rho>0$. Let $\rho_1=2\,\rho$, then as q is seminorm and M is non-decreasing and convex, we have

$$\sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M \left(q \left(\frac{\Delta_{\nu}^{m} \phi_{k}(a)}{\rho} \right) \right) \right]$$
$$\leq \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[\frac{M}{2} \left(q \left(\frac{\Delta_{\nu}^{m-1} \varphi_{k}(a)}{\rho} \right) \right) + \frac{1}{2} M \left(q \left(\frac{\Delta_{\nu}^{m-1} \varphi_{k+1}(a)}{\rho} \right) \right) \right]$$

whence $a \in |N_p| (B, \Delta_v^m, M, q, s)$.

In general $|N_p|(B, \Delta_v^i, M, q, s) \subseteq$

 $|N_p|(B, \Delta_v^m, M, q, s)$ for all i = 1, 2, ..., m-1 and the inclusion is strict. To show that the inclusion is strict, consider the following example.

Example 2.8. Let X = C, q(x) = |x|, M(x) = x, s=0 and $p_k = 1$ for all k. Let $a = (a_k)$ be defined by $a_k = 3k^2 - 3k + 1$, then $a \notin |N_p|(B, \Delta_v^2, M, q, s)$ but $a \in |N_p|(B, \Delta_v^3, M, q, s)$. **Theorem 2.9.** If $t = (t_k)$ and $r = (r_k)$ are bounded sequences of positive real numbers with $0 < t_k \le r_k < \infty$ for each k, then for any orlicz function M,

$$\bar{|N_p|} (B, \Delta_v^m, M, t, q)$$

$$\subseteq \bar{|N_p|} (B, \Delta_v^m, M, r, q)$$

Proof: Let $a \in |N_p| (B, \Delta_v^m, M, t, q)$. Then there exists some $\rho > 0$ such that

$$\sum_{k=1}^{\infty} b_{nk} \left[M \left(q \left(\frac{\Delta_{v}^{m} \phi_{k}(a)}{\rho} \right) \right) \right]^{r_{k}} < \infty. \text{ This implies}$$

that $b_{nk} M \left(q \left(\frac{\Delta_{v}^{m} \phi_{i}(a)}{\rho} \right) \right) \le 1$ for sufficiently large

values of *i* say $i \ge k_0$ for some fixed $k_0 \in N$. Since *M* is non-decreasing, we get

$$\sum_{k\geq k_0}^{\infty} b_{nk} \left[M \left(q \left(\frac{\Delta_{\nu}^m \phi_k(a)}{\rho} \right) \right) \right]^{r_k} \leq \sum_{k\geq k_0}^{\infty} b_{nk} \left[M \left(q \left(\frac{\Delta_{\nu}^m \phi_k(a)}{\rho} \right) \right) \right]^{r_k} < \infty.$$

Hence $a \in |N_p|(B, \Delta_v^m, M, r, q)$.

3. Composite space $|N_p|(B, \Delta_v^m, M^z, r, q, s)$ using composite orlicz function M^z

Taking orlicz function M^z instead of M in the space $|\bar{N}_p|(B, \Delta_v^m, M, r, q, s)$ we can define the composite space $|\bar{N}_p|(B, \Delta_v^m, M^z, r, q, s)$ as follows: **Definition 3.1.** For a fixed natural number z, we define

International Conference on "Innovative Approach in Applied Physical, Mathematical/Statistical, Chemical Sciences and Emerging Energy Technology for Sustainable Development" (APMSCSET-2017) ISBN-978-93-85822-39-1

6

$$\left\{\begin{matrix} N_{p} \mid \left(B, \Delta_{v}^{m}, M^{z}, r, q, s\right) = \\ \left\{a \in w(X) : \sum_{k=1}^{\infty} \frac{b_{nk}}{k^{s}} \left[M^{z} \left(q\left(\frac{\Delta_{v}^{m} \phi_{k}(a)}{\rho}\right)\right)\right]^{r_{k}} \\ < \infty, \text{ for some } \rho > 0 \end{matrix}\right\}.$$

Theorem 3.2. For any orlicz function M and $z \in N$,

$$(i) | N_p| \left(B, \Delta_v^m, M^z, r, q, s \right)$$

$$\subseteq |\bar{N}_p| \left(B, \Delta_v^m, r, q, s \right).$$

(ii) Suppose there exists a constant β , $0 < \beta \le 1$, such that $M(t) \le \beta(t)$ for all $t \ge 0$ and let and $n, z \in N$ be such that n < z, then

$$|\bar{N}_{p}|(B, \Delta_{v}^{m}, r, q, s) \subseteq |\bar{N}_{p}|(B, \Delta_{v}^{m}, M^{n}, r, q, s)$$

$$\subseteq |\bar{N}_{p}|(B, \Delta_{v}^{m}, M^{z}, r, q, s).$$
The set of the se

The proof follows from Theorem 2.5 and Theorem 2.4(i) and hence is omitted.

Example

$$M_{1}(t) = e^{t} - 1 \ge 1$$
 and

 $M_2(t) = \frac{t^2}{1+t} \le t$ for all $t \ge 0$ satisfy the conditions

given in Theorem 3.2 (i), (ii) respectively.

3.3.

REFERENCES

- [1] Altin, Y., Et, M., and Tripathy, B. C., "The sequence space $\bar{|N_p|(M,r,q,s)|}$ on semi-normed spaces", *Appl. Math. Comput.* 154 (2004), pp.423–430.
- [2] Bhardwaj, V. K., and Singh, N.,"Some sequence spaces defined by \bar{N} , p_n |summability", *Demonstratio Math.* 32 (1999), pp.

539-546.

[3] Bhardwaj, V. K., and Singh, N., "Some sequence spaces defined by \bar{N} , p_n | summability and an orlicz function" *Indian J*.

Pure Appl. Math. 31 (2000),pp. 319–325.

- [4] Et, M., and Colak, R.," On some generalized difference sequence spaces," *Soochow J. Math.* 21 (1995), pp. 377–386.
- [5] Et. M., and Esi,A.,"On köthe -Toeplitz duals of generalized difference sequence spaces", Bull. Malaysian Math. Sci. Soc. 23(1), (2000), pp. 1-8.
- [6] Et, M., and Nuray, F.," Δ^m -statistical convergence", *Indian J. Pure Appl. Math.* 32 (2001), pp.961–969.

- [7] Kamthan, P. K., and Gupta, M.," Sequences Spaces and Series", *Marcel Dekker Inc.*, New York, 1981.
- [8] Kizmaz, H.," On certain sequence spaces", *Canad. Math. Bull.* 24 (1981), pp. 169–176.
- [9] Krasnoselsky, M. A., and Rutitsky, Y. B.," Convex Functions and orlicz Spaces," P. Noordhoff Ltd., Groningen, 1961.
- [10] Lindenstrauss, J., and Tzarirl, L.,"On orlicz sequence spaces," *Israel J. Math.* 10 (1971), pp. 379–390.
- [11] Maddox, I. J.,"Elements of Functional Analysis", Cambridge Univ. Press, Cambridge 1970.
- [12] Nanda ,A, S., and Mohanty, S.,"Paranormed Cesa'ro sequence spaces", J. Indian Math. Soc. 60 (1994), pp. 211–219.
- [13] Wilansky, A.,"Modern Methods in Topological Vector Spaces", McGraw-Hill, D"sseldorf, 1978.u